
Perforce in FreeBSD
Development

Scott Long <scottl@FreeBSD.org >
Revision: 45530

FreeBSD is a registered trademark of the FreeBSD Foundation.

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those desig-
nations appear in this document, and the FreeBSD Project was aware
of the trademark claim, the designations have been followed by the
“™” or the “®” symbol.

2014-08-27 by jmg.

Table of Contents
1. Introduction . 1
2. Getting Started . 2
3. Clients . 3
4. Syncing . 5
5. Branches . 5
6. Integrations . 7
7. Submit . 7
8. Editing . 8
9. Changes, Descriptions, and History . 9
10. Diffs . 10
11. Adding and Removing Files . 10
12. Working with Diffs . 11
13. Renaming Files . 12
14. Interactions Between FreeBSD Subversion and Perforce . 12
15. Offline Operation . 13
16. Notes for Google Summer of Code . 13

1. Introduction
The FreeBSD project uses the Perforce version control system to manage experimental
projects that are not ready for the main Subversion repository.

mailto:scottl@FreeBSD.org
https://svnweb.freebsd.org/changeset/doc/45530

Availability, Documentation, and Resources

2

1.1. Availability, Documentation, and Resources

While Perforce is a commercial product, the client software for interacting with the server
is freely available from Perforce. It can be easily installed on FreeBSD via the devel/p4
port or can be downloaded from the Perforce web site at http://www.perforce.com/
perforce/loadprog.html , which also offers client applications for other OS's.

While there is a GUI client available, most people use the command line application called
p4. This document is written from the point of view of using this command.

Detailed documentation is available online at http://www.perforce.com/per-
force/technical.html .

Reading the “Perforce User's Guide” and “Perforce Command Reference” is highly rec-
ommended. The p4 application also contains an extensive amount of online help acces-
sible via p4 help .

The FreeBSD Perforce server is hosted on perforce.freebsd.org , port 1666. The repos-
itory is browsable online at http://p4web.freebsd.org .

2. Getting Started
The first step to using Perforce is to obtain an account on the server. If you already have a
FreeBSD.org account, log into freefall , run the following command, and enter a pass-
word that is not the same as your FreeBSD login or any other SSH passphrase:

% /usr/local/bin/p4newuser

Of course if you do not have a FreeBSD.org account, you will need to coordinate with
your sponsor.

Warning

An email will be sent to your FreeBSD address that contains the
password you specified above in cleartext. Be sure to change the
password once your Perforce account has been created!

The next step is to set the environment variables that p4 needs, and verify that it can
connect to the server. The P4PORT variable is required to be set for all operations, and
specifies the appropriate Perforce server to talk to. For the FreeBSD project, set it like so:

% export P4PORT=perforce.freebsd.org:1666

http://www.freebsd.org/cgi/url.cgi?ports/devel/p4/pkg-descr
http://www.perforce.com/perforce/loadprog.html
http://www.perforce.com/perforce/loadprog.html
http://www.perforce.com/perforce/technical.html
http://www.perforce.com/perforce/technical.html
http://p4web.freebsd.org

Perforce in FreeBSD Development

3

Note

Users with shell access on the FreeBSD.org cluster may wish to
tunnel the Perforce client-server protocol via an SSH tunnel, in
which case the above string should be set to localhost.

The FreeBSD server also requires that the P4USER and P4PASSWD variables be set. Use the
username and password from above, like so:

% export P4USER= username
% export P4PASSWD= password

Test that this works by running the following command:

% p4 info

This should return a list of information about the server. If it does not, check that you
have the P4PORT variable set correctly.

3. Clients
Perforce provides access to the repository and tracks state on a per-client basis. In Per-
force terms, a client is a specification that maps files and directories from the reposito-
ry to the local machine. Each user can have multiple clients, and each client can access
different or overlapping parts of the repository. The client also specifies the root direc-
tory of the file tree that it maps, and it specifies the machine that the tree lives on. Thus,
working on multiple machines requires that multiple clients be used.

Clients may be accessed via p4 client . Running this command with no arguments will
bring up a client template in an editor, allowing you to create a new client for your work.
The important fields in this template are explained below:

Client:
This is the name of the client spec. It can be anything you want, but it must be
unique within the Perforce server. A naming convention that is commonly used
is username _machinename , which makes it easy to identify clients when browsing
them. A default name will be filled in that is just the machine name.

Description:
This can contain a simple text description to help identify the client.

Clients

4

Root:
This is the local directory that will serve as the root directory of all the files in the
client mapping. This should be a unique location in your filesystem that does not
overlap with other files or Perforce clients.

Options:
Most of the default options are fine, though it is usually a good idea to make sure that
the compress and rmdir options are present and do not have a no prefix on them.
Details about each option are in the Perforce docs.

LineEnd:
This handles CR-LF conversions and should be left to the default unless you have
special needs for it.

View:
This is where the server-to-local file mappings go. The default is

//depot/... //client/...

This will map the entire Perforce repository to the Root directory of your client.
DO NOT USE THIS DEFAULT! The FreeBSD repo is huge, and trying to map and sync it
all will take an enormous amount of resources. Instead, only map the section of the
repo that you intend to work on. For example, there is the smpng project tree at //
depot/projects/smpng . A mapping for this might look like:

//depot/projects/smpng/... //client/...

The ... should be taken literally. It is a Perforce idiom for saying “this directory and
all files and directories below it.”

A Perforce “view” can contain multiple mappings. Say you want to map in both the
SMPng tree and the NFS tree. Your View might look like:

//depot/projects/smpng/... //client/smpng/...
 //depot/projects/nfs/... //client/nfs/...

Remember that the client is the name of the client that was specified in the Client
section, but in the View it also resolves to the directory that was specified in the Root
section.

Also note that the same file or directory cannot be mapped multiple times in a single
view. The following is illegal and will produce undefined results:

//depot/projects/smpng/... //client/smpng-foo/...
 //depot/projects/smpng/... //client/smpng-bar/...

Views are a tricky part of the learning experience with Perforce, so do not be afraid
to ask questions.

Perforce in FreeBSD Development

5

Existing clients can be listed via p4 clients . They can be viewed without being modified
via p4 client -o clientname.

Whenever you are interacting with files in Perforce, the P4CLIENT environment variable
must be set to the name of the client that you are using, like so:

% export P4CLIENT= myclientname

Note that client mappings in the repository are not exclusive; multiple clients can map in
the same part of the repository. This allows multiple people to access and modify the same
parts of the repository, allowing a team of people to work together on the same code.

4. Syncing
Once you have a client specification defined and the P4CLIENT variable set, the next step
is to pull the files for that client down to your local machine. This is done with p4 sync ,
which instructs Perforce to synchronize the local files in your client with the repository.
The first time it runs, it will download all of the files. Subsequent runs will only download
files that have changed since the previous run. This allows you to stay in sync with others
whom you might be working with.

Sync operations only work on files that the Perforce server knows has changed. If you
change or delete a file locally without informing the server, doing a sync will not bring
it back. However, doing a p4 sync -f will unconditionally sync all files, regardless of
their state. This is useful for resolving problems where you think that your tree might
be corrupt.

You can sync a subset of your tree or client by specifying a relative path to the sync com-
mand. For example, to only sync the ufs directory of the smpng project, you might do the
following:

% cd projectroot /smpng
% p4 sync src/sys/ufs/...

Specifying a local relative path works for many other p4 commands.

5. Branches
One of the strongest features of Perforce is branching. Branches are very cheap to create,
and moving changes between related branches is very easy (as will be explained later).
Branches also allow you to do very experimental work in a sandbox-like environment,
without having to worry about colliding with others or destabilizing the main tree. They
also provide insulation against mistakes while learning the Perforce system. With all of
these benefits, it makes sense for each project to have its own branch, and we strongly

Branches

6

encourage that with FreeBSD. Frequent submits of changes to the server are also encour-
aged.

Similar to Subversion, the Perforce repository (the “depot”) is a single flat tree. Every
file, whether a unique creation or a derivative from a branch, is accessible via a simple
path under the server //depot directory. When you create a branch, all you are doing
is creating a new path under the //depot. This is in sharp contrast to systems like CVS,
where each branch lives in the same path as its parent. With Perforce, the server tracks
the relationship between the files in the parent and child, but the files themselves live
under their own paths.

The first step to creating a branch is to create a branch specification. This is similar to a
client specification, but is created via the command p4 branch branchname.

The following important fields are explained:

Branch
The name of the branch. It can be any name, but must be unique within the reposi-
tory. The common convention in FreeBSD is to use username _projectname .

Description
This can hold a simple text description to describe the branch.

View
This is the branch mapping. Instead of mapping from the depot to the local machine
like a client map, it maps between the branch parent and branch child in the depot.
For example, you might want to create a branch of the smpng project. The mapping
might look like:

//depot/projects/smpng/... //depot/projects/my-super-smpng/...

Or, you might want to create a brand new branch off of the stock FreeBSD sources:

//depot/vendor/freebsd/... //depot/projects/my-new-project/...

This will map the FreeBSD HEAD tree to your new branch.

Creating the branch spec only saves the spec itself in the server, it does not modify the
depot or change any files. The directory that you specified in the branch is empty on the
server until you populate it.

To populate your branch, first edit your client with p4 client and make sure that the
branch directory is mapped in your client. You might need to add a View line like:

//depot/projects/my-new-project/... //myclient /my-new-project/...

The next step is to run p4 integrate, as described in the next section.

Perforce in FreeBSD Development

7

6. Integrations
“Integration” is the term used by Perforce to describe the action of moving changes from
one part of the depot to another. It is most commonly done in conjunction with creating
and maintaining branches. An integration is done when you want to initially populate a
branch, and it is done when you want to move subsequent changes in the branch from
the parent to the child, or from the child to the parent. A common example of this is
periodically integrating changes from the vendor FreeBSD tree to your child branch tree,
allowing you to keep up to date with changes in the FreeBSD tree. The Perforce server
tracks the changes in each tree and knows when there are changes that can be integrated
from one tree to another.

The common way to do an integration is with the following command:

% p4 integrate -b branchname

branchname is the name given to a branch spec, as discussed in the previous section. This
command will instruct Perforce to look for changes in the branch parent that are not yet
in the child. From those changes it will prepare a list of diffs to move. If the integration is
being done for the first time on a branch (for example doing an initial population opera-
tion), then the parent files will simply be copied to the child location on the local machine.

Once the integration operation is done, you must run p4 resolve to accept the changes
and resolve possible conflicts. Conflicts can arise from overlapping changes that hap-
pened in both the parent and child copy of a file. Usually, however, there are no conflicts,
and Perforce can quickly figure out how to merge the changes together. Use the following
commands to do a resolve operation:

% p4 resolve -as
% p4 resolve

The first invocation will instruct Perforce to automatically merge the changes together
and accept files that have no conflicts. The second invocation will allow you to inspect
each file that has a possible conflict and resolve it by hand if needed.

Once all of the integrated files have been resolved, they need to be committed back to the
repository. This is done via p4 submit, explained in the next section.

7. Submit
Changes that are made locally should be committed back to the Perforce server for safe
keeping and so that others can access them. This is done via p4 submit. When you run this
command, it will open up a submit template in an editor. FreeBSD has a custom template,
and the important fields are described below:

Description:

Editing

8

 <enter description here>
 PR:
 Submitted by:
 Reviewed by:
 Approved by:
 Obtained from:
 MFP4 after:

It is good practice to provide at least 2-3 sentences that describe what the changes are that
you are submitting. You should say what the change does, why it was done that way or
what problem is solves, and what APIs it might change or other side effects it might have.
This text should replace the <enter description here> line in the template. You should
wrap your lines and start each line with a TAB. The tags below it are FreeBSD-specific and
can be removed if not needed.

Files:

This is automatically populated with all of the files in your client that were marked in the
add, delete, integrate, or edit states on the server. It is always a very good idea to review
this list and remove files that might not be ready yet.

Once you save the editor session, the submit will happen to the server. This also means
that the local copies of the submitted files will be copied back to the server. If anything
goes wrong during this process, the submit will be aborted, and you will be notified that
the submit has been turned into a changelist that must be corrected and re-submitted.
Submits are atomic, so if one file fails, the entire submit is aborted.

Submits cannot be reverted, but they can be aborted while in the editor by exiting the
editor without changing the Description text. Perforce will complain about this the first
time you do it and will put you back in the editor. Exiting the editor the second time will
abort the operation. Reverting a submitted change is very difficult and is best handled on
a case-by-case basis.

8. Editing
The state of each file in the client is tracked and saved on the server. In order to avoid
collisions from multiple people working on the same file at once, Perforce tracks which
files are opened for edit, and uses this to help with submit, sync, and integration opera-
tions later on.

To open a file for editing, use p4 edit like so:

% p4 edit filename

This marks the file on the server as being in the edit state, which then allows it to be sub-
mitted after changes are made, or marks it for special handling when doing an integration
or sync operation. Note that editing is not exclusive in Perforce. Multiple people can have

Perforce in FreeBSD Development

9

the same file in the edit state (you will be informed of others when you run edit), and
you can submit your changes even when others are still editing the file.

When someone else submits a change to a file that you are editing, you will need to resolve
his changes with yours before your submit will succeed. The easiest way to do this is to
either run a p4 sync or p4 submit and let it fail with the conflict, then run p4 resolve to
manually resolve and accept his changes into your copy, then run p4 submit to commit
your changes to the repository.

If you have a file open for edit and you want to throw away your changes and revert it to
its original state, run p4 revert like so:

% p4 revert filename

This resyncs the file to the contents of the server, and removes the edit attribute from
the server. Any local changes that you had will be lost. This is quite useful when you have
a made changes to a file but later decide that you do not want to keep them.

When a file is synced, it is marked read-only in the filesystem. When you tell the server to
open it for editing, it is changed to read-write on the filesystem. While these permissions
can easily be overridden by hand, they are meant to gently remind you that you should
being using p4 edit. Files that have local changes but are not in the edit state may get
overwritten when doing a p4 sync .

9. Changes, Descriptions, and History
Changes to the Perforce depot can be listed via p4 changes . This will provide a brief
description of each change, who made the change, and what its change number was. A
change can be examined in detail via p4 describe changenumber. This will provide the
submit log and the diffs of the actual change.

Commonly, p4 describe is used in one of three ways:

p4 describe -s CHANGE
List a short description of changeset CHANGE, including the commit log of the par-
ticular changeset and a list of the files it affected.

p4 describe -du CHANGE
List a description of changeset CHANGE, including the commit log of the particular
changeset, a list of the files it affected and a patch for each modified file, in a format
similar to “unified diff” patches (but not exactly the same).

p4 describe -dc CHANGE
List a description of changeset CHANGE, including the commit log of the particular
changeset, a list of the files it affected and a patch for each modified file, in a format
similar to “context diff” patches (but not exactly the same).

Diffs

10

The history of a file, including all submits, integrations, and branches of it will be shown
by p4 filelog filename.

10. Diffs
There are two methods of producing file diffs in Perforce, either against local changes
that have not been submitted yet, or between two trees (or within a branch) in the depot.
These are done with different commands, diff and diff2 :

p4 diff
This generates a diff of the local changes to files in the edit state. The -du and -
dc flags can be used to create unified or context diffs, respectively, or the P4DIFF
environment variable can be set to a local diff command to be used instead. It is a
very good idea to use this command to review your changes before submitting them.

p4 diff2
This creates a diff between arbitrary files in the depot, or between files specified in a
branch spec. The diff operation takes place on the server, so P4DIFF variable has no
effect, though the -du and -dc flags do work. The two forms of this command are:

% p4 diff2 -b branchname

and

% p4 diff2 //depot/ path1 //depot/ path2

In all cases the diff will be written to the standard output. Unfortunately, Perforce pro-
duces a diff format that is slightly incompatible with the traditional Unix diff and patch
tools. Using the P4DIFF variable to point to the real diff(1) tool can help this, but only
for p4 diff . The output of diff2 command must be post-processed to be useful (the -u
flag of diff2 will produce unified diffs that are somewhat compatible, but it does not in-
clude files that have been added or deleted). There is a post-processing script at: https://
svnweb.freebsd.org/base/head/tools/tools/perforce/awkdiff?view=co .

11. Adding and Removing Files
Integrating a branch will bring existing files into your tree, but you may still want to add
new files or remove existing ones. Adding files is easily done be creating the file and then
running p4 add like so:

% p4 add filename

If you want to add a whole tree of files, run a command like:

% find . -type f | xargs p4 add

http://www.FreeBSD.org/cgi/man.cgi?query=diff&sektion=1
https://svnweb.freebsd.org/base/head/tools/tools/perforce/awkdiff?view=co
https://svnweb.freebsd.org/base/head/tools/tools/perforce/awkdiff?view=co

Perforce in FreeBSD Development

11

Note
Perforce can track UNIX symlinks too, so you can probably use
“\! -type d” as the matching expression in find(1) above. We do
not commit symlinks into the source tree of FreeBSD though, so this
should not be necessary.

Doing a p4 submit will then copy the file to the depot on the server. It is very important
to only add files, not directories. Explicitly adding a directory will cause Perforce to treat
it like a file, which is not what you want.

Removing a file is just as easy with the p4 delete command like so:

% p4 delete filename

This will mark the file for deletion from the depot the next time that a submit is run. It
will also remove the local copy of the file, so beware.

Of course, deleting a file does not actually remove it from the repository.

Deleted files can be resurrected by syncing them to a prior version. The only way to per-
manently remove a file is to use p4 obliterate. This command is irreversible and expen-
sive, so it is only available to those with admin access.

12. Working with Diffs
Sometimes you might need to apply a diff from another source to a tree under Perforce
control. If it is a large diff that affects lots of files, it might be inconvenient to manually
run p4 edit on each file. There is a trick for making this easier. First, make sure that no
files are open on your client and that your tree is synced and up to date. Then apply the
diff using the normal tools, and coerce the permissions on the files if needed. Then run
the following commands:

% p4 diff -se ... | xargs p4 edit
% p4 diff -sd ... | xargs p4 delete
% find . -type f | xargs p4 add

The first command tells Perforce to look for files that have changed, even if they are not
open. The second command tells Perforce to look for files that no longer exist on the lo-
cal machine but do exist on the server. The third command then attempts to add all of
the files that it can find locally. This is a very brute-force method, but it works because
Perforce will only add the files that it does not already know about. The result of running

http://www.FreeBSD.org/cgi/man.cgi?query=find&sektion=1

Renaming Files

12

these commands will be a set of files that are opened for edit, removal, or add, as appro-
priate.

Verify the active changelist with:

% p4 changelist
% p4 diff -du

and just do a p4 submit after that.

13. Renaming Files
Perforce does not have a built-in way of renaming files or moving them to a different
part of the tree. Simply copying a file to the new location, doing a p4 add on it, and a p4
delete on the old copy, works, but does not preserve change history of the file. This can
make future integrations with parents and children very bumpy, in fact. A better method
of dealing with this is to do a one-time, in-tree integration, like so:

% p4 integrate -i oldfile newfile
% p4 resolve
% p4 delete oldfile
% p4 submit

The integration will force Perforce to keep a record of the relationship between the old
and new names, which will assist it in future integrations. The -i flag tells it that it is
a “baseless” integration, meaning that there is no branch history available for it to use
in the integration. That is perfect for an integration like this, but should not be used for
normal branch-based integrations.

14. Interactions Between FreeBSD Subversion and
Perforce
The FreeBSD Perforce and Subversion repositories are completely separate. However,
changes to Subversion are tracked at near-real-time in Perforce. Every 2 minutes, the
Subversion server is polled for updates in the HEAD branch, and those updates are com-
mitted to Perforce in the //depot/vendor/freebsd/... tree. This tree is then available
for branching and integrating to derivative projects. Any project that directly modifies
that FreeBSD source code should have this tree as its branch parent (or grandparent, de-
pending on the needs), and periodic integrations and syncs should be done so that your
tree stays up to date and avoids conflicts with mainline development.

The bridge between Subversion and Perforce is one-way; changes to Subversion will be
reflected in Perforce, but changes in Perforce will not be reflected in Subversion.

Perforce in FreeBSD Development

13

15. Offline Operation
One weakness of Perforce is that it assumes that network access to the server is always
available. Most state, history, and metadata is saved on the server, and there is no provi-
sion for replicating the server like there is with SVN. It is possible to run a proxy server,
but it only provides very limited utility for offline operation.

The best way to work offline is to make sure that your client has no open files and is fully
synced before going offline. Then when editing a file, manually change the permissions to
read-write. When you get back online, run the commands listed in the Section 12, “Work-
ing with Diffs” to automatically identify files that have been edited, added, and removed.
It is quite common to be surprised by Perforce overwriting a locally changed file that was
not opened for edit, so be extra vigilant with this.

16. Notes for Google Summer of Code
Most FreeBSD projects under the Google Summer of Code program are located on the
FreeBSD Perforce server under one of the following locations:

• //depot/projects/soc2005/ project-name /...

• //depot/projects/soc2006/ project-name /...

• //depot/projects/soc2007/ project-name /...

• //depot/projects/soc2008/ project-name /...

The project mentor is responsible for choosing a suitable project name and getting the
student going with Perforce.

Access to the FreeBSD Perforce server does not imply access to subversion, though we
happily encourage all students to consider joining the project when the time is appropri-
ate.

	Perforce in FreeBSD Development
	Table of Contents
	1. Introduction
	1.1. Availability, Documentation, and Resources

	2. Getting Started
	3. Clients
	4. Syncing
	5. Branches
	6. Integrations
	7. Submit
	8. Editing
	9. Changes, Descriptions, and History
	10. Diffs
	11. Adding and Removing Files
	12. Working with Diffs
	13. Renaming Files
	14. Interactions Between FreeBSD Subversion and Perforce
	15. Offline Operation
	16. Notes for Google Summer of Code

