
Writing a GEOM Class

Ivan Voras <ivoras@FreeBSD.org >
Revision: 44964

FreeBSD is a registered trademark of the FreeBSD Foundation.

Intel, Celeron, Centrino, Core, EtherExpress, i386, i486, Itanium, Pen-
tium, and Xeon are trademarks or registered trademarks of Intel Cor-
poration or its subsidiaries in the United States and other countries.

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those desig-
nations appear in this document, and the FreeBSD Project was aware
of the trademark claim, the designations have been followed by the
“™” or the “®” symbol.

2014-05-26 by bcr.

Abstract
This text documents some starting points in developing GEOM class-
es, and kernel modules in general. It is assumed that the reader is fa-
miliar with C userland programming.

Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
3. On FreeBSD Kernel Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
4. On GEOM Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

1. Introduction
1.1. Documentation

Documentation on kernel programming is scarce — it is one of few areas where there is
nearly nothing in the way of friendly tutorials, and the phrase “use the source!” really
holds true. However, there are some bits and pieces (some of them seriously outdated)
floating around that should be studied before beginning to code:

mailto:ivoras@FreeBSD.org
https://svnweb.freebsd.org/changeset/doc/44964


Preliminaries

2

• The FreeBSD Developer's Handbook — part of the documentation project, it does not
contain anything specific to kernel programming, but rather some general useful in-
formation.

• The FreeBSD Architecture Handbook — also from the documentation project, contains
descriptions of several low-level facilities and procedures. The most important chapter
is 13, Writing FreeBSD device drivers.

• The Blueprints section of FreeBSD Diary web site — contains several interesting articles
on kernel facilities.

• The man pages in section 9 — for important documentation on kernel functions.

• The geom(4) man page and PHK's GEOM slides — for general introduction of the GEOM
subsystem.

• Man pages g_bio(9), g_event(9), g_data(9), g_geom(9), g_provider(9) g_consumer(9),
g_access(9) & others linked from those, for documentation on specific functionalities.

• The style(9) man page — for documentation on the coding-style conventions which
must be followed for any code which is to be committed to the FreeBSD Subversion tree.

2. Preliminaries
The best way to do kernel development is to have (at least) two separate computers. One of
these would contain the development environment and sources, and the other would be
used to test the newly written code by network-booting and network-mounting filesys-
tems from the first one. This way if the new code contains bugs and crashes the machine,
it will not mess up the sources (and other “live” data). The second system does not even
require a proper display. Instead, it could be connected with a serial cable or KVM to the
first one.

But, since not everybody has two or more computers handy, there are a few things that
can be done to prepare an otherwise “live” system for developing kernel code. This setup
is also applicable for developing in a VMWare or QEmu virtual machine (the next best
thing after a dedicated development machine).

2.1. Modifying a System for Development

For any kernel programming a kernel with INVARIANTS enabled is a must-have. So enter
these in your kernel configuration file:

options INVARIANT_SUPPORT
options INVARIANTS

For more debugging you should also include WITNESS support, which will alert you of
mistakes in locking:

http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/developers-handbook/index.html
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/arch-handbook/index.html
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/arch-handbook/driverbasics.html
http://www.freebsddiary.org
http://www.FreeBSD.org/cgi/man.cgi?query=geom&amp;sektion=4
http://phk.freebsd.dk/pubs/
http://www.FreeBSD.org/cgi/man.cgi?query=g_bio&amp;sektion=9
http://www.FreeBSD.org/cgi/man.cgi?query=g_event&amp;sektion=9
http://www.FreeBSD.org/cgi/man.cgi?query=g_data&amp;sektion=9
http://www.FreeBSD.org/cgi/man.cgi?query=g_geom&amp;sektion=9
http://www.FreeBSD.org/cgi/man.cgi?query=g_provider&amp;sektion=9
http://www.FreeBSD.org/cgi/man.cgi?query=g_consumer&amp;sektion=9
http://www.FreeBSD.org/cgi/man.cgi?query=g_access&amp;sektion=9
http://www.FreeBSD.org/cgi/man.cgi?query=style&amp;sektion=9
http://www.vmware.com/
http://www.qemu.org/


Writing a GEOM Class

3

options WITNESS_SUPPORT
options WITNESS

For debugging crash dumps, a kernel with debug symbols is needed:

  makeoptions    DEBUG=-g

With the usual way of installing the kernel (make installkernel) the debug kernel will
not be automatically installed. It is called kernel.debug  and located in /usr/obj/usr/
src/sys/KERNELNAME/ . For convenience it should be copied to /boot/kernel/ .

Another convenience is enabling the kernel debugger so you can examine a kernel panic
when it happens. For this, enter the following lines in your kernel configuration file:

options KDB
options DDB
options KDB_TRACE

For this to work you might need to set a sysctl (if it is not on by default):

  debug.debugger_on_panic=1

Kernel panics will happen, so care should be taken with the filesystem cache. In particu-
lar, having softupdates might mean the latest file version could be lost if a panic occurs
before it is committed to storage. Disabling softupdates yields a great performance hit,
and still does not guarantee data consistency. Mounting filesystem with the “sync” op-
tion is needed for that. For a compromise, the softupdates cache delays can be shortened.
There are three sysctl's that are useful for this (best to be set in /etc/sysctl.conf ):

kern.filedelay=5
kern.dirdelay=4
kern.metadelay=3

The numbers represent seconds.

For debugging kernel panics, kernel core dumps are required. Since a kernel panic might
make filesystems unusable, this crash dump is first written to a raw partition. Usually,
this is the swap partition. This partition must be at least as large as the physical RAM in
the machine. On the next boot, the dump is copied to a regular file. This happens after
filesystems are checked and mounted, and before swap is enabled. This is controlled with
two /etc/rc.conf  variables:

dumpdev="/dev/ad0s4b"
dumpdir="/usr/core 

The dumpdev  variable specifies the swap partition and dumpdir  tells the system where in
the filesystem to relocate the core dump on reboot.



Starting the Project

4

Writing kernel core dumps is slow and takes a long time so if you have lots of memory
(>256M) and lots of panics it could be frustrating to sit and wait while it is done (twice —
first to write it to swap, then to relocate it to filesystem). It is convenient then to limit the
amount of RAM the system will use via a /boot/loader.conf  tunable:

  hw.physmem="256M"

If the panics are frequent and filesystems large (or you simply do not trust softup-
dates+background fsck) it is advisable to turn background fsck off via /etc/rc.conf  vari-
able:

  background_fsck="NO"

This way, the filesystems will always get checked when needed. Note that with back-
ground fsck, a new panic could happen while it is checking the disks. Again, the safest
way is not to have many local filesystems by using another computer as an NFS server.

2.2. Starting the Project

For the purpose of creating a new GEOM class, an empty subdirectory has to be created
under an arbitrary user-accessible directory. You do not have to create the module direc-
tory under /usr/src .

2.3. The Makefile

It is good practice to create Makefiles for every nontrivial coding project, which of course
includes kernel modules.

Creating the Makefile is simple thanks to an extensive set of helper routines provided by
the system. In short, here is how a minimal Makefile looks for a kernel module:

SRCS=g_journal.c
KMOD=geom_journal

.include <bsd.kmod.mk>

This Makefile (with changed filenames) will do for any kernel module, and a GEOM class
can reside in just one kernel module. If more than one file is required, list it in the SRCS
variable, separated with whitespace from other filenames.

3. On FreeBSD Kernel Programming
3.1. Memory Allocation

See malloc(9). Basic memory allocation is only slightly different than its userland equiv-
alent. Most notably, malloc() and free() accept additional parameters as is described in
the man page.

http://www.FreeBSD.org/cgi/man.cgi?query=malloc&amp;sektion=9


Writing a GEOM Class

5

A “malloc type” must be declared in the declaration section of a source file, like this:

  static MALLOC_DEFINE(M_GJOURNAL, "gjournal data", "GEOM_JOURNAL ↺
Data");

To use this macro, sys/param.h , sys/kernel.h  and sys/malloc.h  headers must be in-
cluded.

There is another mechanism for allocating memory, the UMA (Universal Memory Allo-
cator). See uma(9) for details, but it is a special type of allocator mainly used for speedy
allocation of lists comprised of same-sized items (for example, dynamic arrays of structs).

3.2. Lists and Queues

See queue(3). There are a LOT of cases when a list of things needs to be maintained. For-
tunately, this data structure is implemented (in several ways) by C macros included in the
system. The most used list type is TAILQ because it is the most flexible. It is also the one
with largest memory requirements (its elements are doubly-linked) and also the slow-
est (although the speed variation is on the order of several CPU instructions more, so it
should not be taken seriously).

If data retrieval speed is very important, see tree(3) and hashinit(9).

3.3. BIOs

Structure bio is used for any and all Input/Output operations concerning GEOM. It basi-
cally contains information about what device ('provider') should satisfy the request, re-
quest type, offset, length, pointer to a buffer, and a bunch of “user-specific” flags and
fields that can help implement various hacks.

The important thing here is that bios are handled asynchronously. That means that, in
most parts of the code, there is no analogue to userland's read(2) and write(2) calls that
do not return until a request is done. Rather, a developer-supplied function is called as a
notification when the request gets completed (or results in error).

The asynchronous programming model (also called “event-driven”) is somewhat harder
than the much more used imperative one used in userland (at least it takes a while to get
used to it). In some cases the helper routines g_write_data () and g_read_data () can be
used, but not always. In particular, they cannot be used when a mutex is held; for example,
the GEOM topology mutex or the internal mutex held during the .start () and .stop()
functions.

http://www.FreeBSD.org/cgi/man.cgi?query=uma&amp;sektion=9
http://www.FreeBSD.org/cgi/man.cgi?query=queue&amp;sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=tree&amp;sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=hashinit&amp;sektion=9
http://www.FreeBSD.org/cgi/man.cgi?query=read&amp;sektion=2
http://www.FreeBSD.org/cgi/man.cgi?query=write&amp;sektion=2


On GEOM Programming

6

4. On GEOM Programming
4.1. Ggate

If maximum performance is not needed, a much simpler way of making a data transfor-
mation is to implement it in userland via the ggate (GEOM gate) facility. Unfortunately,
there is no easy way to convert between, or even share code between the two approaches.

4.2. GEOM Class

GEOM classes are transformations on the data. These transformations can be combined
in a tree-like fashion. Instances of GEOM classes are called geoms.

Each GEOM class has several “class methods” that get called when there is no geom in-
stance available (or they are simply not bound to a single instance):

• .init  is called when GEOM becomes aware of a GEOM class (when the kernel module
gets loaded.)

• .fini gets called when GEOM abandons the class (when the module gets unloaded)

• .taste  is called next, once for each provider the system has available. If applicable,
this function will usually create and start a geom instance.

• .destroy_geom  is called when the geom should be disbanded

• .ctlconf is called when user requests reconfiguration of existing geom

Also defined are the GEOM event functions, which will get copied to the geom instance.

Field .geom in the g_class  structure is a LIST of geoms instantiated from the class.

These functions are called from the g_event kernel thread.

4.3. Softc

The name “softc” is a legacy term for “driver private data”. The name most probably
comes from the archaic term “software control block”. In GEOM, it is a structure (more
precise: pointer to a structure) that can be attached to a geom instance to hold whatever
data is private to the geom instance. Most GEOM classes have the following members:

• struct g_provider *provider  : The “provider” this geom instantiates

• uint16_t n_disks  : Number of consumer this geom consumes

• struct g_consumer **disks  : Array of struct g_consumer* . (It is not possible to use
just single indirection because struct g_consumer* are created on our behalf by GEOM).



Writing a GEOM Class

7

The softc  structure contains all the state of geom instance. Every geom instance has its
own softc.

4.4. Metadata

Format of metadata is more-or-less class-dependent, but MUST start with:

• 16 byte buffer for null-terminated signature (usually the class name)

• uint32 version ID

It is assumed that geom classes know how to handle metadata with version ID's lower
than theirs.

Metadata is located in the last sector of the provider (and thus must fit in it).

(All this is implementation-dependent but all existing code works like that, and it is sup-
ported by libraries.)

4.5. Labeling/creating a GEOM

The sequence of events is:

• user calls geom(8) utility (or one of its hardlinked friends)

• the utility figures out which geom class it is supposed to handle and searches for
geom_CLASSNAME .so library (usually in /lib/geom ).

• it dlopen(3)-s the library, extracts the definitions of command-line parameters and
helper functions.

In the case of creating/labeling a new geom, this is what happens:

• geom(8) looks in the command-line argument for the command (usually label), and
calls a helper function.

• The helper function checks parameters and gathers metadata, which it proceeds to
write to all concerned providers.

• This “spoils” existing geoms (if any) and initializes a new round of “tasting” of the
providers. The intended geom class recognizes the metadata and brings the geom up.

(The above sequence of events is implementation-dependent but all existing code works
like that, and it is supported by libraries.)

4.6. GEOM Command Structure

The helper geom_CLASSNAME.so  library exports class_commands  structure, which is an
array of struct g_command  elements. Commands are of uniform format and look like:

http://www.FreeBSD.org/cgi/man.cgi?query=geom&amp;sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=dlopen&amp;sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=geom&amp;sektion=8


Geoms

8

  verb [-options] geomname [other]

Common verbs are:

• label — to write metadata to devices so they can be recognized at tasting and brought
up in geoms

• destroy — to destroy metadata, so the geoms get destroyed

Common options are:

• -v : be verbose

• -f : force

Many actions, such as labeling and destroying metadata can be performed in userland.
For this, struct g_command  provides field gc_func  that can be set to a function (in the
same .so) that will be called to process a verb. If gc_func  is NULL, the command will be
passed to kernel module, to .ctlreq function of the geom class.

4.7. Geoms

Geoms are instances of GEOM classes. They have internal data (a softc structure) and some
functions with which they respond to external events.

The event functions are:

• .access : calculates permissions (read/write/exclusive)

• .dumpconf : returns XML-formatted information about the geom

• .orphan : called when some underlying provider gets disconnected

• .spoiled  : called when some underlying provider gets written to

• .start  : handles I/O

These functions are called from the g_down  kernel thread and there can be no sleeping in
this context, (see definition of sleeping elsewhere) which limits what can be done quite
a bit, but forces the handling to be fast.

Of these, the most important function for doing actual useful work is the .start () func-
tion, which is called when a BIO request arrives for a provider managed by a instance of
geom class.

4.8. GEOM Threads

There are three kernel threads created and run by the GEOM framework:



Writing a GEOM Class

9

• g_down  : Handles requests coming from high-level entities (such as a userland request)
on the way to physical devices

• g_up  : Handles responses from device drivers to requests made by higher-level entities

• g_event  : Handles all other cases: creation of geom instances, access counting, “spoil”
events, etc.

When a user process issues “read data X at offset Y of a file” request, this is what happens:

• The filesystem converts the request into a struct bio instance and passes it to the GE-
OM subsystem. It knows what geom instance should handle it because filesystems are
hosted directly on a geom instance.

• The request ends up as a call to the .start () function made on the g_down thread and
reaches the top-level geom instance.

• This top-level geom instance (for example the partition slicer) determines that the re-
quest should be routed to a lower-level instance (for example the disk driver). It makes
a copy of the bio request (bio requests ALWAYS need to be copied between instances,
with g_clone_bio ()!), modifies the data offset and target provider fields and executes
the copy with g_io_request ()

• The disk driver gets the bio request also as a call to .start () on the g_down  thread. It
talks to hardware, gets the data back, and calls g_io_deliver () on the bio.

• Now, the notification of bio completion “bubbles up” in the g_up  thread. First the par-
tition slicer gets .done() called in the g_up  thread, it uses information stored in the bio
to free the cloned bio structure (with g_destroy_bio ()) and calls g_io_deliver () on
the original request.

• The filesystem gets the data and transfers it to userland.

See g_bio(9) man page for information how the data is passed back and forth in the bio
structure (note in particular the bio_parent  and bio_children  fields and how they are
handled).

One important feature is: THERE CAN BE NO SLEEPING IN G_UP AND G_DOWN THREADS. This
means that none of the following things can be done in those threads (the list is of course
not complete, but only informative):

• Calls to msleep () and tsleep (), obviously.

• Calls to g_write_data () and g_read_data (), because these sleep between passing the
data to consumers and returning.

• Waiting for I/O.

http://www.FreeBSD.org/cgi/man.cgi?query=g_bio&amp;sektion=9


Kernel Threads for Use in GEOM Code

10

• Calls to malloc(9) and uma_zalloc () with M_WAITOK  flag set

• sx and other sleepable locks

This restriction is here to stop GEOM code clogging the I/O request path, since sleeping
is usually not time-bound and there can be no guarantees on how long will it take (there
are some other, more technical reasons also). It also means that there is not much that
can be done in those threads; for example, almost any complex thing requires memory
allocation. Fortunately, there is a way out: creating additional kernel threads.

4.9. Kernel Threads for Use in GEOM Code

Kernel threads are created with kthread_create(9) function, and they are sort of similar
to userland threads in behaviour, only they cannot return to caller to signify termination,
but must call kthread_exit(9).

In GEOM code, the usual use of threads is to offload processing of requests from g_down
thread (the .start () function). These threads look like “event handlers”: they have a
linked list of event associated with them (on which events can be posted by various func-
tions in various threads so it must be protected by a mutex), take the events from the list
one by one and process them in a big switch () statement.

The main benefit of using a thread to handle I/O requests is that it can sleep when need-
ed. Now, this sounds good, but should be carefully thought out. Sleeping is well and very
convenient but can very effectively destroy performance of the geom transformation. Ex-
tremely performance-sensitive classes probably should do all the work in .start () func-
tion call, taking great care to handle out-of-memory and similar errors.

The other benefit of having a event-handler thread like that is to serialize all the requests
and responses coming from different geom threads into one thread. This is also very con-
venient but can be slow. In most cases, handling of .done() requests can be left to the
g_up  thread.

Mutexes in FreeBSD kernel (see mutex(9)) have one distinction from their more common
userland cousins — the code cannot sleep while holding a mutex). If the code needs to
sleep a lot, sx(9) locks may be more appropriate. On the other hand, if you do almost
everything in a single thread, you may get away with no mutexes at all.

http://www.FreeBSD.org/cgi/man.cgi?query=malloc&amp;sektion=9
http://www.FreeBSD.org/cgi/man.cgi?query=kthread_create&amp;sektion=9
http://www.FreeBSD.org/cgi/man.cgi?query=kthread_exit&amp;sektion=9
http://www.FreeBSD.org/cgi/man.cgi?query=mutex&amp;sektion=9
http://www.FreeBSD.org/cgi/man.cgi?query=sx&amp;sektion=9

	Writing a GEOM Class
	Table of Contents
	1. Introduction
	1.1. Documentation

	2. Preliminaries
	2.1. Modifying a System for Development
	2.2. Starting the Project
	2.3. The Makefile

	3. On FreeBSD Kernel Programming
	3.1. Memory Allocation
	3.2. Lists and Queues
	3.3. BIOs

	4. On GEOM Programming
	4.1. Ggate
	4.2. GEOM Class
	4.3. Softc
	4.4. Metadata
	4.5. Labeling/creating a GEOM
	4.6. GEOM Command Structure
	4.7. Geoms
	4.8. GEOM Threads
	4.9. Kernel Threads for Use in GEOM Code


