
Why you should use a
BSD style license for your

Open Source Project

Bruce Montague <brucem@alumni.cse.ucsc.edu >
Revision: 43184

FreeBSD is a registered trademark of the FreeBSD Foundation.

Intel, Celeron, Centrino, Core, EtherExpress, i386, i486, Itanium, Pen-
tium, and Xeon are trademarks or registered trademarks of Intel Cor-
poration or its subsidiaries in the United States and other countries.

Many of the designations used by manufacturers and sellers to distin-
guish their products are claimed as trademarks. Where those desig-
nations appear in this document, and the FreeBSD Project was aware
of the trademark claim, the designations have been followed by the
“™” or the “®” symbol.

2013-11-13 by hrs.

Table of Contents
1. Introduction . 2
2. Very Brief Open Source History . 2
3. Unix from a BSD Licensing Perspective . 2
4. The Current State of FreeBSD and BSD Licenses . 3
5. The origins of the GPL . 3
6. The origins of Linux and the LGPL . 5
7. Open Source licenses and the Orphaning Problem . 5
8. What a license cannot do . 6
9. GPL Advantages and Disadvantages . 6
10. BSD Advantages . 7
11. Specific Recommendations for using a BSD license . 8
12. Conclusion . 10
13. Addenda . 10

mailto:brucem@alumni.cse.ucsc.edu
https://svnweb.freebsd.org/changeset/doc/43184

Introduction

2

1. Introduction
This document makes a case for using a BSD style license for software and data; specifically
it recommends using a BSD style license in place of the GPL. It can also be read as a BSD
versus GPL Open Source License introduction and summary.

2. Very Brief Open Source History
Long before the term “Open Source” was used, software was developed by loose associa-
tions of programmers and freely exchanged. Starting in the early 1950's, organizations
such as SHARE and DECUS developed much of the software that computer hardware com-
panies bundled with their hardware offerings. At that time computer companies were in
the hardware business; anything that reduced software cost and made more programs
available made the hardware companies more competitive.

This model changed in the 1960's. In 1965 ADR developed the first licensed software prod-
uct independent of a hardware company. ADR was competing against a free IBM pack-
age originally developed by IBM customers. ADR patented their software in 1968. To stop
sharing of their program, they provided it under an equipment lease in which payment
was spread over the lifetime of the product. ADR thus retained ownership and could con-
trol resale and reuse.

In 1969 the US Department of Justice charged IBM with destroying businesses by bundling
free software with IBM hardware. As a result of this suit, IBM unbundled its software; that
is, software became independent products separate from hardware.

In 1968 Informatics introduced the first commercial killer-app and rapidly established the
concept of the software product, the software company, and very high rates of return.
Informatics developed the perpetual license which is now standard throughout the com-
puter industry, wherein ownership is never transferred to the customer.

3. Unix from a BSD Licensing Perspective
AT&T, who owned the original Unix implementation, was a publicly regulated monopoly
tied up in anti-trust court; it was legally unable to sell a product into the software market.
It was, however, able to provide it to academic institutions for the price of media.

Universities rapidly adopted Unix after an OS conference publicized its availability. It was
extremely helpful that Unix ran on the PDP-11, a very affordable 16-bit computer, and was
coded in a high-level language that was demonstrably good for systems programming.
The DEC PDP-11 had, in effect, an open hardware interface designed to make it easy for
customers to write their own OS, which was common. As DEC founder Ken Olsen famously
proclaimed, “software comes from heaven when you have good hardware”.

http://www.share.org
http://www.decus.org

Why you should use a BSD style license for
your Open Source Project

3

Unix author Ken Thompson returned to his alma mater, University of California Berkeley
(UCB), in 1975 and taught the kernel line-by-line. This ultimately resulted in an evolving
system known as BSD (Berkeley Standard Distribution). UCB converted Unix to 32-bits,
added virtual memory, and implemented the version of the TCP/IP stack upon which the
Internet was essentially built. UCB made BSD available for the cost of media, under what
became known as “the BSD license”. A customer purchased Unix from AT&T and then
ordered a BSD tape from UCB.

In the mid-1980s a government anti-trust case against ATT ended with the break-up of
ATT. ATT still owned Unix and was now able to sell it. ATT embarked on an aggressive
licensing effort and most commercial Unixes of the day became ATT-derived.

In the early 1990's ATT sued UCB over license violations related to BSD. UCB discovered
that ATT had incorporated, without acknowledgment or payment, many improvements
due to BSD into ATT's products, and a lengthy court case, primarily between ATT and UCB,
ensued. During this period some UCB programmers embarked on a project to rewrite any
ATT code associated with BSD. This project resulted in a system called BSD 4.4-lite (lite
because it was not a complete system; it lacked 6 key ATT files).

A lengthy series of articles published slightly later in Dr. Dobbs magazine described a BSD-
derived 386 PC version of Unix, with BSD-licensed replacement files for the 6 missing 4.4
lite files. This system, named 386BSD, was due to ex-UCB programmer William Jolitz. It
became the original basis of all the PC BSDs in use today.

In the mid 1990s, Novell purchased ATT's Unix rights and a (then secret) agreement was
reached to terminate the lawsuit. UCB soon terminated its support for BSD.

4. The Current State of FreeBSD and BSD Licenses
The so-called new BSD license applied to FreeBSD within the last few years is effectively
a statement that you can do anything with the program or its source, but you do not
have any warranty and none of the authors has any liability (basically, you cannot sue
anybody). This new BSD license is intended to encourage product commercialization. Any
BSD code can be sold or included in proprietary products without any restrictions on the
availability of your code or your future behavior.

Do not confuse the new BSD license with “public domain”. While an item in the public
domain is also free for all to use, it has no owner.

5. The origins of the GPL
While the future of Unix had been so muddled in the late 1980s and early 1990s, the GPL,
another development with important licensing considerations, reached fruition.

http://www.opensource.org/licenses/bsd-license.php

The origins of the GPL

4

Richard Stallman, the developer of Emacs, was a member of the staff at MIT when his
lab switched from home-grown to proprietary systems. Stallman became upset when
he found that he could not legally add minor improvements to the system. (Many of
Stallman's co-workers had left to form two companies based on software developed at
MIT and licensed by MIT; there appears to have been disagreement over access to the
source code for this software). Stallman devised an alternative to the commercial soft-
ware license and called it the GPL, or "GNU Public License". He also started a non-profit
foundation, the Free Software Foundation (FSF), which intended to develop an entire op-
erating system, including all associated software, that would not be subject to proprietary
licensing. This system was called GNU, for "GNU is Not Unix".

The GPL was designed to be the antithesis of the standard proprietary license. To this end,
any modifications that were made to a GPL program were required to be given back to
the GPL community (by requiring that the source of the program be available to the user)
and any program that used or linked to GPL code was required to be under the GPL. The
GPL was intended to keep software from becoming proprietary. As the last paragraph of
the GPL states:

“This General Public License does not permit incorporating your program into propri-
etary programs.”[1]

The GPL is a complex license so here are some rules of thumb when using the GPL:

• you can charge as much as you want for distributing, supporting, or documenting the
software, but you cannot sell the software itself.

• the rule-of-thumb states that if GPL source is required for a program to compile, the
program must be under the GPL. Linking statically to a GPL library requires a program
to be under the GPL.

• the GPL requires that any patents associated with GPLed software must be licensed for
everyone's free use.

• simply aggregating software together, as when multiple programs are put on one disk,
does not count as including GPLed programs in non-GPLed programs.

• output of a program does not count as a derivative work. This enables the gcc compiler
to be used in commercial environments without legal problems.

• since the Linux kernel is under the GPL, any code statically linked with the Linux kernel
must be GPLed. This requirement can be circumvented by dynamically linking loadable
kernel modules. This permits companies to distribute binary drivers, but often has the
disadvantage that they will only work for particular versions of the Linux kernel.

Due in part to its complexity, in many parts of the world today the legalities of the GPL
are being ignored in regard to Linux and related software. The long-term ramifications
of this are unclear.

http://www.fsf.org
http://www.opensource.org/licenses/gpl-license.php

Why you should use a BSD style license for
your Open Source Project

5

6. The origins of Linux and the LGPL
While the commercial Unix wars raged, the Linux kernel was developed as a PC Unix
clone. Linus Torvalds credits the existence of the GNU C compiler and the associated GNU
tools for the existence of Linux. He put the Linux kernel under the GPL.

Remember that the GPL requires anything that statically links to any code under the GPL
also be placed under the GPL. The source for this code must thus be made available to the
user of the program. Dynamic linking, however, is not considered a violation of the GPL.
Pressure to put proprietary applications on Linux became overwhelming. Such applica-
tions often must link with system libraries. This resulted in a modified version of the GPL
called the LGPL ("Library", since renamed to "Lesser", GPL). The LGPL allows proprietary
code to be linked to the GNU C library, glibc. You do not have to release the source to code
which has been dynamically linked to an LGPLed library.

If you statically link an application with glibc, such as is often required in embedded sys-
tems, you cannot keep your application proprietary, that is, the source must be released.
Both the GPL and LGPL require any modifications to the code directly under the license
to be released.

7. Open Source licenses and the Orphaning Prob-
lem
One of the serious problems associated with proprietary software is known as “orphan-
ing”. This occurs when a single business failure or change in a product strategy causes a
huge pyramid of dependent systems and companies to fail for reasons beyond their con-
trol. Decades of experience have shown that the momentary size or success of a software
supplier is no guarantee that their software will remain available, as current market con-
ditions and strategies can change rapidly.

The GPL attempts to prevent orphaning by severing the link to proprietary intellectual
property.

A BSD license gives a small company the equivalent of software-in-escrow without any le-
gal complications or costs. If a BSD-licensed program becomes orphaned, a company can
simply take over, in a proprietary manner, the program on which they are dependent. An
even better situation occurs when a BSD code-base is maintained by a small informal con-
sortium, since the development process is not dependent on the survival of a single com-
pany or product line. The survivability of the development team when they are mentally
in the zone is much more important than simple physical availability of the source code.

http://www.opensource.org/licenses/lgpl-license.php

What a license cannot do

6

8. What a license cannot do
No license can guarantee future software availability. Although a copyright holder can
traditionally change the terms of a copyright at anytime, the presumption in the BSD
community is that such an attempt simply causes the source to fork.

The GPL explicitly disallows revoking the license. It has occurred, however, that a com-
pany (Mattel) purchased a GPL copyright (cphack), revoked the entire copyright, went
to court, and prevailed [2]. That is, they legally revoked the entire distribution and all
derivative works based on the copyright. Whether this could happen with a larger and
more dispersed distribution is an open question; there is also some confusion regarding
whether the software was really under the GPL.

In another example, Red Hat purchased Cygnus, an engineering company that had taken
over development of the FSF compiler tools. Cygnus was able to do so because they had
developed a business model in which they sold support for GNU software. This enabled
them to employ some 50 engineers and drive the direction of the programs by contribut-
ing the preponderance of modifications. As Donald Rosenberg states "projects using li-
censes like the GPL...live under constant threat of having someone take over the project
by producing a better version of the code and doing it faster than the original owners." [3]

9. GPL Advantages and Disadvantages
A common reason to use the GPL is when modifying or extending the gcc compiler. This
is particularly apt when working with one-off specialty CPUs in environments where all
software costs are likely to be considered overhead, with minimal expectations that oth-
ers will use the resulting compiler.

The GPL is also attractive to small companies selling CDs in an environment where "buy-
low, sell-high" may still give the end-user a very inexpensive product. It is also attractive
to companies that expect to survive by providing various forms of technical support, in-
cluding documentation, for the GPLed intellectual property world.

A less publicized and unintended use of the GPL is that it is very favorable to large com-
panies that want to undercut software companies. In other words, the GPL is well suited
for use as a marketing weapon, potentially reducing overall economic benefit and con-
tributing to monopolistic behavior.

The GPL can present a real problem for those wishing to commercialize and profit from
software. For example, the GPL adds to the difficulty a graduate student will have in di-
rectly forming a company to commercialize his research results, or the difficulty a stu-
dent will have in joining a company on the assumption that a promising research project
will be commercialized.

Why you should use a BSD style license for
your Open Source Project

7

For those who must work with statically-linked implementations of multiple software
standards, the GPL is often a poor license, because it precludes using proprietary imple-
mentations of the standards. The GPL thus minimizes the number of programs that can
be built using a GPLed standard. The GPL was intended to not provide a mechanism to
develop a standard on which one engineers proprietary products. (This does not apply to
Linux applications because they do not statically link, rather they use a trap-based API.)

The GPL attempts to make programmers contribute to an evolving suite of programs,
then to compete in the distribution and support of this suite. This situation is unrealistic
for many required core system standards, which may be applied in widely varying envi-
ronments which require commercial customization or integration with legacy standards
under existing (non-GPL) licenses. Real-time systems are often statically linked, so the
GPL and LGPL are definitely considered potential problems by many embedded systems
companies.

The GPL is an attempt to keep efforts, regardless of demand, at the research and develop-
ment stages. This maximizes the benefits to researchers and developers, at an unknown
cost to those who would benefit from wider distribution.

The GPL was designed to keep research results from transitioning to proprietary prod-
ucts. This step is often assumed to be the last step in the traditional technology transfer
pipeline and it is usually difficult enough under the best of circumstances; the GPL was
intended to make it impossible.

10. BSD Advantages
A BSD style license is a good choice for long duration research or other projects that need
a development environment that:

• has near zero cost

• will evolve over a long period of time

• permits anyone to retain the option of commercializing final results with minimal legal
issues.

This final consideration may often be the dominant one, as it was when the Apache project
decided upon its license:

“This type of license is ideal for promoting the use of a reference body of code that im-
plements a protocol for common service. This is another reason why we choose it for the
Apache group - many of us wanted to see HTTP survive and become a true multiparty
standard, and would not have minded in the slightest if Microsoft or Netscape choose to
incorporate our HTTP engine or any other component of our code into their products, if
it helped further the goal of keeping HTTP common... All this means that, strategically

Specific Recommendations for using a BSD
license

8

speaking, the project needs to maintain sufficient momentum, and that participants re-
alize greater value by contributing their code to the project, even code that would have
had value if kept proprietary.”

Developers tend to find the BSD license attractive as it keeps legal issues out of the way
and lets them do whatever they want with the code. In contrast, those who expect pri-
marily to use a system rather than program it, or expect others to evolve the code, or
who do not expect to make a living from their work associated with the system (such
as government employees), find the GPL attractive, because it forces code developed by
others to be given to them and keeps their employer from retaining copyright and thus
potentially "burying" or orphaning the software. If you want to force your competitors
to help you, the GPL is attractive.

A BSD license is not simply a gift. The question “why should we help our competitors or
let them steal our work?” comes up often in relation to a BSD license. Under a BSD license,
if one company came to dominate a product niche that others considered strategic, the
other companies can, with minimal effort, form a mini-consortium aimed at reestablish-
ing parity by contributing to a competitive BSD variant that increases market competition
and fairness. This permits each company to believe that it will be able to profit from some
advantage it can provide, while also contributing to economic flexibility and efficiency.
The more rapidly and easily the cooperating members can do this, the more successful
they will be. A BSD license is essentially a minimally complicated license that enables such
behavior.

A key effect of the GPL, making a complete and competitive Open Source system widely
available at cost of media, is a reasonable goal. A BSD style license, in conjunction with ad-
hoc-consortiums of individuals, can achieve this goal without destroying the economic
assumptions built around the deployment-end of the technology transfer pipeline.

11. Specific Recommendations for using a BSD li-
cense
• The BSD license is preferable for transferring research results in a way that will widely

be deployed and most benefit an economy. As such, research funding agencies, such as
the NSF, ONR and DARPA, should encourage in the earliest phases of funded research
projects, the adoption of BSD style licenses for software, data, results, and open hard-
ware. They should also encourage formation of standards based around implemented
Open Source systems and ongoing Open Source projects.

• Government policy should minimize the costs and difficulties in moving from research
to deployment. When possible, grants should require results to be available under a
commercialization friendly BSD style license.

• In many cases, the long-term results of a BSD style license more accurately reflect the
goals proclaimed in the research charter of universities then what occurs when results

Why you should use a BSD style license for
your Open Source Project

9

are copyrighted or patented and subject to proprietary university licensing. Anecdotal
evidence exists that universities are financially better rewarded in the long run by re-
leasing research results and then appealing to donations from commercially successful
alumni.

• Companies have long recognized that the creation of de facto standards is a key mar-
keting technique. The BSD license serves this role well, if a company really has a unique
advantage in evolving the system. The license is legally attractive to the widest audi-
ence while the company's expertise ensures their control. There are times when the
GPL may be the appropriate vehicle for an attempt to create such a standard, especial-
ly when attempting to undermine or co-opt others. The GPL, however, penalizes the
evolution of that standard, because it promotes a suite rather than a commercially ap-
plicable standard. Use of such a suite constantly raises commercialization and legal is-
sues. It may not be possible to mix standards when some are under the GPL and others
are not. A true technical standard should not mandate exclusion of other standards for
non-technical reasons.

• Companies interested in promoting an evolving standard, which can become the core
of other companies' commercial products, should be wary of the GPL. Regardless of the
license used, the resulting software will usually devolve to whoever actually makes the
majority of the engineering changes and most understands the state of the system. The
GPL simply adds additional legal friction to the result.

• Large companies, in which Open Source code is developed, should be aware that pro-
grammers appreciate Open Source because it leaves the software available to the em-
ployee when they change employers. Some companies encourage this behavior as an
employment perk, especially when the software involved is not directly strategic. It is,
in effect, a front-loaded retirement benefit with potential lost opportunity costs but no
direct costs. Encouraging employees to work for peer acclaim outside the company is
a cheap portable benefit a company can sometimes provide with near zero downside.

• Small companies with software projects vulnerable to orphaning should attempt to use
the BSD license when possible. Companies of all sizes should consider forming such
Open Source projects when it is to their mutual advantage to maintain the minimal
legal and organization overheads associated with a true BSD-style Open Source project.

• Non-profits should participate in Open Source projects when possible. To minimize
software engineering problems, such as mixing code under different licenses, BSD-style
licenses should be encouraged. Being leery of the GPL should particularly be the case
with non-profits that interact with the developing world. In some locales where appli-
cation of law becomes a costly exercise, the simplicity of the new BSD license, as com-
pared to the GPL, may be of considerable advantage.

Conclusion

10

12. Conclusion
In contrast to the GPL, which is designed to prevent the proprietary commercialization
of Open Source code, the BSD license places minimal restrictions on future behavior. This
allows BSD code to remain Open Source or become integrated into commercial solutions,
as a project's or company's needs change. In other words, the BSD license does not become
a legal time-bomb at any point in the development process.

In addition, since the BSD license does not come with the legal complexity of the GPL
or LGPL licenses, it allows developers and companies to spend their time creating and
promoting good code rather than worrying if that code violates licensing.

13. Addenda

[1] http://www.gnu.org/licenses/gpl.html

[2] http://archives.cnn.com/2000/TECH/computing/03/28/cyberpatrol.↺
mirrors/

[3] Open Source: the Unauthorized White Papers, Donald K. ↺
Rosenberg, IDG Books,
 2000. Quotes are from page 114, ``Effects of the GNU GPL''.

[4] In the "What License to Use?" section of
 http://www.oreilly.com/catalog/opensources/book/brian.html

This whitepaper is a condensation of an original work available at
http://alumni.cse.ucsc.edu/~brucem/open_source_license.htm

	Why you should use a BSD style license for your Open Source Project
	Table of Contents
	1. Introduction
	2. Very Brief Open Source History
	3. Unix from a BSD Licensing Perspective
	4. The Current State of FreeBSD and BSD Licenses
	5. The origins of the GPL
	6. The origins of Linux and the LGPL
	7. Open Source licenses and the Orphaning Problem
	8. What a license cannot do
	9. GPL Advantages and Disadvantages
	10. BSD Advantages
	11. Specific Recommendations for using a BSD license
	12. Conclusion
	13. Addenda

